3.153 \(\int \frac{x^m (a+b \sin ^{-1}(c x))}{(d-c^2 d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=272 \[ \frac{b c m \sqrt{1-c^2 x^2} x^{m+2} \text{HypergeometricPFQ}\left (\left \{1,\frac{m}{2}+1,\frac{m}{2}+1\right \},\left \{\frac{m}{2}+\frac{3}{2},\frac{m}{2}+2\right \},c^2 x^2\right )}{d \left (m^2+3 m+2\right ) \sqrt{d-c^2 d x^2}}-\frac{m \sqrt{1-c^2 x^2} x^{m+1} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{m+1}{2},\frac{m+3}{2},c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{d (m+1) \sqrt{d-c^2 d x^2}}-\frac{b c \sqrt{1-c^2 x^2} x^{m+2} \text{Hypergeometric2F1}\left (1,\frac{m+2}{2},\frac{m+4}{2},c^2 x^2\right )}{d (m+2) \sqrt{d-c^2 d x^2}}+\frac{x^{m+1} \left (a+b \sin ^{-1}(c x)\right )}{d \sqrt{d-c^2 d x^2}} \]

[Out]

(x^(1 + m)*(a + b*ArcSin[c*x]))/(d*Sqrt[d - c^2*d*x^2]) - (m*x^(1 + m)*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])*H
ypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, c^2*x^2])/(d*(1 + m)*Sqrt[d - c^2*d*x^2]) - (b*c*x^(2 + m)*Sqrt[1
- c^2*x^2]*Hypergeometric2F1[1, (2 + m)/2, (4 + m)/2, c^2*x^2])/(d*(2 + m)*Sqrt[d - c^2*d*x^2]) + (b*c*m*x^(2
+ m)*Sqrt[1 - c^2*x^2]*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2])/(d*(2 + 3*m +
m^2)*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.314929, antiderivative size = 272, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {4705, 4713, 4711, 364} \[ \frac{b c m \sqrt{1-c^2 x^2} x^{m+2} \, _3F_2\left (1,\frac{m}{2}+1,\frac{m}{2}+1;\frac{m}{2}+\frac{3}{2},\frac{m}{2}+2;c^2 x^2\right )}{d \left (m^2+3 m+2\right ) \sqrt{d-c^2 d x^2}}-\frac{m \sqrt{1-c^2 x^2} x^{m+1} \, _2F_1\left (\frac{1}{2},\frac{m+1}{2};\frac{m+3}{2};c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{d (m+1) \sqrt{d-c^2 d x^2}}+\frac{x^{m+1} \left (a+b \sin ^{-1}(c x)\right )}{d \sqrt{d-c^2 d x^2}}-\frac{b c \sqrt{1-c^2 x^2} x^{m+2} \, _2F_1\left (1,\frac{m+2}{2};\frac{m+4}{2};c^2 x^2\right )}{d (m+2) \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^m*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(x^(1 + m)*(a + b*ArcSin[c*x]))/(d*Sqrt[d - c^2*d*x^2]) - (m*x^(1 + m)*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])*H
ypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, c^2*x^2])/(d*(1 + m)*Sqrt[d - c^2*d*x^2]) - (b*c*x^(2 + m)*Sqrt[1
- c^2*x^2]*Hypergeometric2F1[1, (2 + m)/2, (4 + m)/2, c^2*x^2])/(d*(2 + m)*Sqrt[d - c^2*d*x^2]) + (b*c*m*x^(2
+ m)*Sqrt[1 - c^2*x^2]*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2])/(d*(2 + 3*m +
m^2)*Sqrt[d - c^2*d*x^2])

Rule 4705

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[
((f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n)/(2*d*f*(p + 1)), x] + (Dist[(m + 2*p + 3)/(2*d*(p +
1)), Int[(f*x)^m*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n, x], x] + Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^Frac
Part[p])/(2*f*(p + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x]
)^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] &&  !GtQ
[m, 1] && (IntegerQ[m] || IntegerQ[p] || EqQ[n, 1])

Rule 4713

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[
Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2], Int[((f*x)^m*(a + b*ArcSin[c*x])^n)/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a,
b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] &&  !GtQ[d, 0] && (IntegerQ[m] || EqQ[n, 1])

Rule 4711

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x)
^(m + 1)*(a + b*ArcSin[c*x])*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, c^2*x^2])/(Sqrt[d]*f*(m + 1)), x] -
Simp[(b*c*(f*x)^(m + 2)*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2])/(Sqrt[d]*f^2*
(m + 1)*(m + 2)), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] &&  !IntegerQ[m]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{x^m \left (a+b \sin ^{-1}(c x)\right )}{\left (d-c^2 d x^2\right )^{3/2}} \, dx &=\frac{x^{1+m} \left (a+b \sin ^{-1}(c x)\right )}{d \sqrt{d-c^2 d x^2}}-\frac{m \int \frac{x^m \left (a+b \sin ^{-1}(c x)\right )}{\sqrt{d-c^2 d x^2}} \, dx}{d}-\frac{\left (b c \sqrt{1-c^2 x^2}\right ) \int \frac{x^{1+m}}{1-c^2 x^2} \, dx}{d \sqrt{d-c^2 d x^2}}\\ &=\frac{x^{1+m} \left (a+b \sin ^{-1}(c x)\right )}{d \sqrt{d-c^2 d x^2}}-\frac{b c x^{2+m} \sqrt{1-c^2 x^2} \, _2F_1\left (1,\frac{2+m}{2};\frac{4+m}{2};c^2 x^2\right )}{d (2+m) \sqrt{d-c^2 d x^2}}-\frac{\left (m \sqrt{1-c^2 x^2}\right ) \int \frac{x^m \left (a+b \sin ^{-1}(c x)\right )}{\sqrt{1-c^2 x^2}} \, dx}{d \sqrt{d-c^2 d x^2}}\\ &=\frac{x^{1+m} \left (a+b \sin ^{-1}(c x)\right )}{d \sqrt{d-c^2 d x^2}}-\frac{m x^{1+m} \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \, _2F_1\left (\frac{1}{2},\frac{1+m}{2};\frac{3+m}{2};c^2 x^2\right )}{d (1+m) \sqrt{d-c^2 d x^2}}-\frac{b c x^{2+m} \sqrt{1-c^2 x^2} \, _2F_1\left (1,\frac{2+m}{2};\frac{4+m}{2};c^2 x^2\right )}{d (2+m) \sqrt{d-c^2 d x^2}}+\frac{b c m x^{2+m} \sqrt{1-c^2 x^2} \, _3F_2\left (1,1+\frac{m}{2},1+\frac{m}{2};\frac{3}{2}+\frac{m}{2},2+\frac{m}{2};c^2 x^2\right )}{d \left (2+3 m+m^2\right ) \sqrt{d-c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.24728, size = 207, normalized size = 0.76 \[ \frac{x^{m+1} \left (b c m x \sqrt{1-c^2 x^2} \text{HypergeometricPFQ}\left (\left \{1,\frac{m}{2}+1,\frac{m}{2}+1\right \},\left \{\frac{m}{2}+\frac{3}{2},\frac{m}{2}+2\right \},c^2 x^2\right )-m (m+2) \sqrt{1-c^2 x^2} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{m+1}{2},\frac{m+3}{2},c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )+(m+1) \left ((m+2) \left (a+b \sin ^{-1}(c x)\right )-b c x \sqrt{1-c^2 x^2} \text{Hypergeometric2F1}\left (1,\frac{m}{2}+1,\frac{m}{2}+2,c^2 x^2\right )\right )\right )}{d (m+1) (m+2) \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^m*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(x^(1 + m)*(-(m*(2 + m)*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, c^2
*x^2]) + (1 + m)*((2 + m)*(a + b*ArcSin[c*x]) - b*c*x*Sqrt[1 - c^2*x^2]*Hypergeometric2F1[1, 1 + m/2, 2 + m/2,
 c^2*x^2]) + b*c*m*x*Sqrt[1 - c^2*x^2]*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2]
))/(d*(1 + m)*(2 + m)*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.575, size = 0, normalized size = 0. \begin{align*} \int{{x}^{m} \left ( a+b\arcsin \left ( cx \right ) \right ) \left ( -{c}^{2}d{x}^{2}+d \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x)

[Out]

int(x^m*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \arcsin \left (c x\right ) + a\right )} x^{m}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*arcsin(c*x) + a)*x^m/(-c^2*d*x^2 + d)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-c^{2} d x^{2} + d}{\left (b \arcsin \left (c x\right ) + a\right )} x^{m}}{c^{4} d^{2} x^{4} - 2 \, c^{2} d^{2} x^{2} + d^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a)*x^m/(c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{m} \left (a + b \operatorname{asin}{\left (c x \right )}\right )}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**m*(a+b*asin(c*x))/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Integral(x**m*(a + b*asin(c*x))/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \arcsin \left (c x\right ) + a\right )} x^{m}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)*x^m/(-c^2*d*x^2 + d)^(3/2), x)